5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase.

نویسندگان

  • P A Lochhead
  • I P Salt
  • K S Walker
  • D G Hardie
  • C Sutherland
چکیده

Insulin regulates the rate of expression of many hepatic genes, including PEPCK, glucose-6-phosphatase (G6Pase), and glucose-6-phosphate dehydrogenase (G6PDHase). The expression of these genes is also abnormally regulated in type 2 diabetes. We demonstrate here that treatment of hepatoma cells with 5-aminoimidazole-4-carboxamide riboside (AICAR), an agent that activates AMP-activated protein kinase (AMPK), mimics the ability of insulin to repress PEPCK gene transcription. It also partially represses G6Pase gene transcription and yet has no effect on the expression of G6PDHase or the constitutively expressed genes cyclophilin or beta-actin. Several lines of evidence suggest that the insulin-mimetic effects of AICAR are mediated by activation of AMPK. Also, insulin does not activate AMPK in H4IIE cells, suggesting that this protein kinase does not link the insulin receptor to the PEPCK and G6Pase gene promoters. Instead, AMPK and insulin may lie on distinct pathways that converge at a point upstream of these 2 gene promoters. Investigation of the pathway by which AMPK acts may therefore give insight into the mechanism of action of insulin. Our results also suggest that activation of AMPK would inhibit hepatic gluconeogenesis in an insulin-independent manner and thus help to reverse the hyperglycemia associated with type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle.

5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose trans...

متن کامل

Novel concepts in insulin regulation of hepatic gluconeogenesis.

The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalyt...

متن کامل

EFFECT OF AEROBIC TRAINING ON EXPRESSION OF PGC-1Α & PEPCK GENES IN HEPATOCYTE OF STREPTOZOTOCIN-INDUCED DIABETIC MALE RATS

Background & Aims: Recently, molecular cell studies about the effect of physical exercises on diabetics have attracted the attention of many researchers. The purpose of this study is to investigate the effect of 10 weeks aerobic training on the expression of PGC-1a and PEPCK genes in hepatocyte of nicotinamide-Streptozotocin-induced diabetic male rats. Materials & Methods: In this experimental...

متن کامل

The effect of eight weeks of high intensity interval training and n-chromosomal royal jelly on G6Pase gene expression in hepatocytes, glucose levels and insulin resistance in type 2 diabetic rats

Background: The aim of this study was the interactive effect of High Intensity Exercise Training(HIIT)and n-chromosomal royal jelly on G6Pase gene expression in liver hepatocytes and glucose levels and insulin resistance in type 2 diabetic rats. Intense interval training is usually performed with intensities above 90% of the maximum heart rate and short rest periods and a training duration of l...

متن کامل

Sodium arsenite induces orphan nuclear receptor SHP gene expression via AMP-activated protein kinase to inhibit gluconeogenic enzyme gene expression.

Sodium arsenite has been demonstrated to alter the expression of genes associated with glucose homeostasis in tissues involved in the pathogenesis of type 2 diabetes; however, the underlying molecular mechanism has not been fully elucidated yet. In this study, we report that the sodium arsenite-induced gene expression of the small heterodimer partner (SHP; NR0B2), an atypical orphan nuclear rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2000